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Abstract. We simulate the spread of an initial damage in the Kauffman cellular automata 
at its critical point on the square lattice. We calculate various moments of the probability 
that a site has been damaged n times and check for multifractality in the critical exponents 
for different ensembles. Specifically we find no evidence for multifractality when the 
moments of the probabilities are evaluated with lattice size, L, but multifractal behaviour 
occurs when the moments are monitored as a function of time. t. 

Multifractality [l-41 has been recently observed in many different systems. The 
distribution of voltages in random resistor networks, or the distribution of growth 
probabilities in a diff usion-limited aggregate, are two typical examples of the occurrence 
of multifractal behaviour. The various moments, Mq, of these distributions each scale 
with a unique exponent which depends on q and the exponents are not simply related 
to each other as is the case, for example, with the various moments of the distribution 
of percolating clusters [ 5 ] .  We would like to elaborate on the recent report of multi- 
fractal behaviour in the Kauffman model [6]. 

The Kauffman [7] model is a deterministic cellular automata that was introduced 
to investigate the effects of the switching properties of the gene. The state of a central 
spin at time t is only determined by the states of its neighbours at time ( t  - 1 ) .  At the 
start of a trial 16 rules are assigned to each site: for each of the 16 states of the 
neighbours a random number r is compared to p c  (-0.29 for the square lattice)?, and 
the central spin will be assigned the state up if r is less than p c ,  otherwise it will be 
placed in the state down. These rules persist for the duration of the trial and for all 
subsequent times the central spin will flip at the next time step to the state designated 
by its neighbours. The system is allowed to relax from an initial random state to 
‘equilibrium’. A lattice is cloned, i.e. the spins and corresponding rules are identical 
for the replica, with one exception, in that the central spin is placed in the opposite 
state. This is the initial damage. The two lattices are allowed to evolve and the damage 
monitored, i.e. the cloud of sites [8] which is the number of sites in different spin 
states between the two lattices. This is also called the ‘overlap’ or Hamming distance. 

We tabulate for each site i, the number of times, n i ,  a given site is damaged as a 
function of time and for each i calculate the probability of being damaged p ,  - n, /X  n,. 
At least 100 trials were performed for each data point. 

P It is now believed that p .  may be somewhat higher (0.295-0.298) but our main conclusions are insensitive 
to the exact value of p c .  
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We searched for multifractality in several ensembles as follows. (i) We calculate 
the moments Mq = p p  for only those damage clouds that touch the edge of the lattice 
of size L and only at that instant of time. We considered lattices in the range 
2 0 s  Ls 250. Mq = 1 for q = 1. For large L we expect 

Mq - L"". 

Since the number of damaged sites MO - Ldf we have Zi ni - Ldf+' .  Therefore the 
moments are expected to scale as Mq = Z ( n i l x i  n i ) q  - Ldr('-q). 

If there is no multifractal behaviour then 4(q )  = d,( 1 - q ) .  In figure 1 the open 
circles show 4 ( q )  against q at p = 0.29. We find no evidence for multifractal behaviour 
and df= 1.67kO.03 in good agreement with previous results. 

(ii) We next consider the ensemble for all damage clouds that persist after at least 
28 Monte Carlo time steps. This set includes those clusters that will eventually propagate 
and touch the edge of the infinite lattice and also those clouds which are finite in 
extent but where the damage persists by cycling within a local cluster of sites. The 
moments scale as 

t " ( 4 )  
M4 - 

and in figure 1 (open triangles) we note two distinct regions; for q < 1 4(q) seems to 
vary continuously whilst for q 3 1,4(q) = 0. This behaviour can be understood in that 
the moments are dominated by those sites that are cyclically damaged. 
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Figure 1. The critical exponents & ( q )  as a function of q for: (0) case ( i )  for only those 
damage clouds that touch the edge of the lattice at size L and only at that instant of time; 
( A )  case (ii) for all clusters that persist after 2' time steps; (0)  case (iii) for only those 
clouds that propagate to the edge of the lattice. For case (i) M,, =I p : ' -  Lmcql ,  the slope 
is 1.69 and d(O)= 1.66. For cases ( i i )  and (iii) M, = Z p : ' -  t m c q ' ,  see text for discussion. 
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(iii) We finally consider only those damage clusters that touch the edge of the lattice 
for L =  100 and 150. For these clusters we calculate M, as a function of time. The 
data points for L = 100 and 150 are indistinguishable and here (figure 1, full circles) 
we see clear evidence for multifractality confirming the earlier results of Coniglio er 
a1 [ 6 ] .  

To understand the results shown in figure 1 we have plotted in figure 2 the frequency 
of first passage time against In (time) for L =  100. This curve is very similar to the 
voltage distribution curve observed for the random resistor network [ 11 and the growth 
probabilities of diffusion-limited aggregation. These distributions all share the feature 
that they have a pronounced peak with a long tail. This broad distribution and the 
absence of a unique characteristic time give rise to multifractality when time is used 
as the variable. Similar differences between various moments as a function of time 
and as a function of distance were also observed for diffusion [9]. 
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Figure 2. The frequency of first passage time plotted against In (time) for lattice size L = 100. 

We have simulated various ensembles of the Kauffman model and checked for 
multifractal behaviour. No evidence for multifractal behaviour is found when the 
various moments of the probabilities are plotted as a function of the average spanning 
time or equivalently as a function of lattice size L. However we do find multifractal 
behaviour when the various moments of the probability distribution for those damage 
clouds that eventually span the lattice are plotted as a function of time. 

This research is supported in part by a NSERC grant of Canada. Very special thanks 
are due to Dietrich Stauffer and Antonio Coniglio for invaluable comments, program- 
ming advice and suggestions for improving an earlier version of this manuscript. 
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